БАРБАШОВА АФИНА СЕРГЕЕВНА

МАГНИТНО-РЕЗОНАНСНАЯ ТОМОГРАФИЯ В КОМПЛЕКСНОЙ ЛУЧЕВОЙ ДИАГНОСТИКЕ САРКОМ МЯГКИХ ТКАНЕЙ ТУЛОВИЩА И КОНЕЧНОСТЕЙ У ДЕТЕЙ

14.01.12 – онкология

14.01.13 – лучевая диагностика, лучевая терапия

АВТОРЕФЕРАТ

диссертации на соискание ученой степени кандидата медицинских наук

Работа выполнена в федеральном государственном бюджетном учреждении «Национальный медицинский исследовательский центр онкологии имени Н.Н. Блохина» Министерства здравоохранения Российской Федерации (директор – доктор медицинских наук, профессор, член-корреспондент РАН Стилиди Иван Сократович).

Научные руководители:

кандидат медицинских наук

Михайлова Елена Владимировна

Официальные оппоненты:

Петриченко Анна Викторовна, кандидат медицинских наук, ученый секретарь государственного бюджетного учреждения здравоохранения города Москвы «Научно-практический центр специализированной медицинской помощи детям имени В.Ф. Войно-Ясенецкого Департамента здравоохранения города Москвы»

Надточий Андрей Геннадиевич, доктор медицинских наук, профессор, заведующий отделом лучевой диагностики федерального государственного бюджетного учреждения «Центральный научно-исследовательский институт стоматологии и челюстно-лицевой хирургии» Министерства здравоохранения Российской Федерации»

Ведущая организация: федеральное государственное бюджетное учреждение «Национальный медицинский исследовательский центр онкологии имени Н.Н. Петрова» Министерства здравоохранения Российской Федерации

Защита состоится «18» апреля 2019 года в 14-00 часов на заседании диссертационного совета Д 001.017.01 на базе ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России по адресу: 115478, г. Москва, Каширское шоссе, д. 23.

С диссертацией можно ознакомиться в научной библиотеке ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России по адресу: 115478, г. Москва, Каширское шоссе, д. 24 и на сайте www.ronc.ru.

Ученый секретарь диссертационного совета доктор медицинских наук, профессор

Кадагидзе Заира Григорьевна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования и степень ее разработанности

Саркомы мягких тканей (СМТ) составляют 6-8% от всех солидных опухолей у детей (Шароев Т.А., 1999). Они относятся к группе мезенхимальных опухолей, которые насчитывают более 50 подтипов, и отличаются агрессивностью, ранним метастазированием и частым рецидивированием, что затрудняет выбор тактики лечения и подбор соответствующей терапии (Fletcher C.D.M. et al., 2002; van Vliet M. et al., 2009).

Общая выживаемость детей остается низкой, так 2-х летняя выживаемость составляет 61,8%, 5-ти летняя — 39% (Шароев Т.А., 1999). Неутешительные показатели выживаемости обусловлены не только особенностями роста опухолей, но и высокими цифрами ошибочных диагнозов на ранних этапах диагностики, достигающими 85% (Буров Д.А. и соавт., 2009).

Наиболее предпочтительными в детской практике являются методы, не несущие лучевой нагрузки на пациента и позволяющие за короткое время высказаться о характере процесса. К ним относятся ультразвуковое исследование и магнитно-резонансная томография. При этом роль ультразвукового исследования (УЗИ) в диагностике опухолей мягких тканей достаточно освещена в литературе, чего нельзя сказать о другом неионизирующем методе — магнитно-резонансной томографии (МРТ) (Каминская И.В. 2003; Pino G. et al., 1993). Большинство публикаций, посвященных МРТ, сводится к демонстрации клинических случаев, попыткам оценки данных МРТ на ограниченном клиническом материале (Hachitanda Y. et al., 1988; Pal M. et al., 2010).

МРТ обладает рядом неоспоримых преимуществ перед другими методами, а именно, дает возможность одновременно получать изображения костных, мягкотканых и сосудистых структур, достоверно оценивать границы выявленных образований и состояние регионарных лимфатических узлов. Благодаря возможности сканирования изображения в произвольной плоскости оценка местной распространенности оказывается наиболее информативной (Jim S. Wu et al., 2009).

МРТ превосходит компьютерную томографию (КТ) и сцинтиграфию скелета в оценке местной и общей распространенности процесса, МРТ также хорошо выявляет вторичные изменения кости, как и РКТ, но является более чувствительной в определении поражения костного мозга и интрамедуллярного распространения опухоли (Christian F. et al., 2004; Sinchun H. et al., 2007). МРТ значительно превосходит РКТ в оценке фасциально-мышечных футляров и сосудисто-нервных структур (Bloem J.L. et al., 1998). Исследователи подчеркивают, что данные МРТ помогают адекватно определить стадию опухолевого процесса и выбрать оптимальный метод лечения (Hudson T.M. et al., 1985; Gillespy T. et al., 1988).

Несмотря на столь значимые особенности метода, его роль в диагностике образований мягких тканей у детей не оценена и сводится только к описательной картине диагностических случаев без оценки информативности метода (Sen J. et al., 2010; Pal M. et al., 2010).

Высокая лучевая нагрузка, неоднозначность и ограниченность возможностей ионизирующих методов диагностики диктуют необходимость применения информативных, безопасных, неинвазивных методов визуализации в диагностике образований мягких тканей туловища и конечностей у детей. Недостаточное освещение данной темы определяет актуальность выбранной работы.

Цель исследования

Повышение эффективности диагностики опухолей мягких тканей туловища и конечностей у детей.

Задачи исследования:

- 1. Изучить и систематизировать MP-семиотику опухолевых и неопухолевых процессов в мягких тканях туловища и конечностей у детей.
- 2. Выявить дифференциально-диагностические критерии злокачественных и доброкачественных опухолей мягких тканей туловища и конечностей у детей, включая рецидивы и послеоперационные изменения.
- 3. Сопоставить информативность MPT с другими методами визуализации (РГ, УЗИ, КТ, РИД) в выявлении, оценке местной и отдаленной распространенности опухолевого процесса (МРТ-всего тела).
- 4. Разработать алгоритм обследования детей с образованиями мягких тканей туловища и конечностей.

Методы и методология исследования

В соответствии с поставленными целями и задачами был проведен анализ клинических проявлений и данных методов лучевой диагностики 107 пациентов с образованиями мягких тканей туловища и конечностей. Проанализированы данные стандартной рентгенографии, компьютерной томографии, магнитно-резонансной томографии, ультразвукового исследования.

Стандартное рентгенологическое исследование выполнялось на аппарате фирмы Siemens Luminos RF Classic 39 детям. Компьютерная томография (КТ) производилась на компьютерных томографах Siemens Somatom и Philips Brilliance 40 пациентам. Магнитно-резонансная томография выполнялась на аппаратах SIEMENS MAGNETOM AVANTO 1,5T и SKYRA 3T 107 больным. Ультразвуковое исследование выполнялось на аппаратах Philips HD11XE, Philips iU22, Siemens Acuson Antares S2000 106 пациентам.

Научная новизна, теоретическая и практическая значимость исследования

Впервые систематизированы и детализированы магнитно-резонансные признаки опухолей мягких тканей у детей, представлена информативность МРТ в оценке местной и отдаленной распространенности сарком мягких тканей у детей с помощью методики МРТ всего тела (МРТ-ВТ).

Впервые сопоставлены данные MPT, операционного материала и морфологических заключений на предмет связи опухоли с магистральными сосудисто-нервными стволами, фасциально-мышечными футлярами и костными структурами.

Впервые сопоставлена информативность методов медицинской визуализации в выявлении и оценке распространенности опухолевого процесса.

На основе полученных результатов разработан алгоритм обследования детей с образованиями мягких тканей, позволяющий значительно снизить лучевую нагрузку на пациента.

Полученные данные позволят повысить качество диагностического процесса и сократить его сроки. Практическое рациональное применение результатов исследования позволит сократить использование лучевых методов диагностики, что существенно снизит лучевую нагрузку на детей с онкологическими заболеваниями. Так в алгоритме обследования детей на предмет исключения патологии мягких тканей не должны применяться рентгенологические методы диагностики в связи с их низкой чувствительностью в выявление патологии.

Систематизация критериев по данным MPT существенно облегчит повседневную работу врачей лучевой диагностики, которые смогут опираться на выявленные достоверные критерии злокачественных образований.

Разработанные подходы и критерии в оценке опухолевого процесса значительно облегчат прогнозирование и выбор тактики лечения больного.

Личный вклад

Автор лично изучил и систематизировал обзор отечественной и зарубежной литературы, касающейся вопросов диагностики образований мягких тканей туловища и конечностей у детей.

Дизайн исследования, цели и задачи работы, создание и наполнение базы данных пациентов проведены автором лично. Все проспективные исследования МРТ (93%) с 2010 по 2013 годы были проведены и анализированы лично автором. Ретроспективные данные МРТ за 2009 год были проанализированы автором.

Статистическая обработка данных, интерпретация полученных результатов, оформление диссертации произведены автором.

Соответствие паспорту специальности

Диссертация соответствует формуле специальности 14.01.12 — онкология («медицинские науки») и области исследования п.7 «Разработка вопросов диагностики, лечения и профилактики в области детской онкологии»; и 14.01.13 — лучевая диагностика, лучевая терапия («медицинские науки») и области исследования п.1 «Лучевая диагностика: диагностика патологических состояний различных органов и систем человека путем формирования и изучения изображений в различных физических полях (электромагнитных, корпускулярных, ультразвуковых и др.)».

Основные положения, выносимые на защиту

- 1. На основании проведенной работы определены критерии опухолевой и неопухолевой патологии мягких тканей туловища и конечностей у детей.
- 2. Выявлены достоверные признаки злокачественных опухолей мягких тканей туловища и конечностей у детей, в том числе признаки наличия рецидивов заболевания на фоне послеоперационных изменений с использованием методики магнитно-резонансной томографии с внутривенным динамическим контрастированием (МРТ-ДК).
- 3. Информативность MPT в оценке местной распространенности опухолевого процесса превосходит данные других методов медицинской визуализации и поэтому должна выполняться всем больным перед оперативным вмешательством с целью определения его объема.
- 4. МРТ-всего тела имеет высокие показатели информативности (чувствительность, специфичность) в выявлении поражения костей и костного мозга при диссеминированных саркомах мягких тканей и должна рассматриваться как предпочтительный метод в выявлении отдаленных метастазов, что значительно снизит лучевую нагрузку на детей.

Внедрение результатов исследования

Разработанные семиотические МР-признаки образований мягких тканей туловища и конечностей у детей применяются в дифференциально-диагностическом процессе в отделении рентгенодиагностическом отдела лучевых методов диагностики и терапии опухолей НИИ детской онкологии и гематологии ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России.

Результаты работы внедрены в образовательный процесс кафедры детской онкологии ФГБОУ ДПО РМАНПО Минздрава России при чтении лекций и проведении семинарских и практических занятий циклов профессиональной переподготовки и повышении квалификации для врачей — детских онкологов, врачей — лечебных специальностей.

Апробация диссертации состоялась 28 ноября 2017 года на совместной научной конференции с участием отделения рентгенодиагностического отдела лучевых методов диагностики и терапии опухолей отдела общей онкологии; отделения химиотерапии гемобластозов отдела химиотерапии; отделения реанимации и анестезиологии НИИ детской онкологии и гематологии; отделения рентгенодиагностического НИИ клинической и экспериментальной радиологии ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России; кафедры детской онкологии ФГБОУ ДПО РМАНПО Минздрава России;

Публикации

По теме диссертации опубликовано 2 статьи в журналах, рекомендованных перечнем ВАК при Минобрнауки России и 8 тезисов конференций.

Объём и структура работы

Диссертация изложена на 155 страницах машинописного текста и состоит из введения, 4 глав, выводов и списка литературы, который включает 159 источников, из них: 42 отечественных и 117 иностранных авторов. Диссертация иллюстрирована 50 рисунками, 31 таблицей.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Характеристика клинического материала. В работу включены 107 пациентов с образованиями мягких тканей туловища и конечностей, поступивших на обследование и проходивших лечение в НИИ ДОиГ ФГБУ «НМИЦ онкологии им. Н.Н. Блохина» Минздрава России с 2009 по 2013 гг.

При проведении комплексного обследования и морфологической верификации диагноза пациенты были разделены на две группы. Первая группа представлена опухолевыми образованиями (n=79), из которых 37 были злокачественные опухоли (3O), 24 — рецидивы 3O и 18 — доброкачественные опухоли (ДО). Ко второй группе были отнесены пациенты с неопухолевой патологией (n=27), в 10 случаях представленной воспалительными процессами и в 17 — послеоперационными изменениями после перенесенных оперативных вмешательств по поводу злокачественных и доброкачественных опухолевых процессов.

Инструментальные методы обследования. Всем 107 пациентам на этапе первичной диагностики была проведена МРТ, в том числе МРТ-ДК в 27 случаях, МРТ-ВТ 15 больным.

Помимо МРТ пациентам проводились и другие методы диагностики — РКТ (n=40), УЗИ (n=106), рентгенография (n=39), РИД костей скелета (n=42) и мягких тканей (n=61).

Магнитно-резонансная томография выполнялась на аппаратах SIEMENS MAGNETOM AVANTO 1,5T и SKYRA 3T по стандартной методике с использованием катушек для тела (body

coil). При стандартном MP-исследовании конечностей применялись различные протоколы сканирования в трех взаимно перпендикулярных плоскостях.

Всем больным выполнялись импульсные последовательности спин-эхо (spin-echo — SE) в Т2 и Т1 взвешенных изображениях (ВИ) и/или быстрое спин-эхо (turbo spin-echo — TSE) в Т2ВИ, а также применялись режимы с подавлением сигнала от жировой ткани в T2fs (T2 fs-fat saturation) и/или в режиме STIR (short time inversion recovery). Стандартно производились исследования в коронарной и сагиттальной проекциях в Т2ВИ и STIR, в аксиальной проекции использовались три протокола — Т2ВИ, Т1ВИ, STIR. Толщина среза составляла 3-5 мм, FOV 250-400 мм². При исследовании туловища применялись последовательности в Т2ВИ (turbo spin echo или blade), в Т1ВИ (vibe), толщина среза — 6 мм. В результате полученных данных оценивалась опухоль по следующим параметрам: размер (больше или меньше 5 см), форма (правильная, неправильная), характер роста (узловой, инфильтративный), контуры (четкие/нечеткие), поверхность (гладкая/бугристая), структура (однородная/неоднородная, солидная, жидкостная, солидно-кистозная, солидная с септами), наличие включений (жир, кальцинаты, кровоизлияния), взаимоотношение с прилежащими структурами (мышцы, сосуды, нервы, кость).

При проведении МРТ-ДК использовались ультрабыстрые (2 сек) последовательности в Т1ВИ (turbo FLASH). Чаще применялась аксиальная проекция сканирования, реже сагиттальная или коронарная, в которой захватывалась опухоль вместе с ближайшей магистральной артерией. Толщина среза — 2,5 мм, поле зрения — 223 мм². Протокол сканирования включал в себя 5 серий преконтрастного изображения, после чего следовали 84 серии постконтрастного изображения. Контрастное вещество (КВ) вводилось внутривенно болюсно при помощи инжекторной системы MEDRAD SPECTRIS SOLARISE или ручным способом 20-мл шприцом в дозировке 0,2 мл/кг. В дальнейшем с помощью программы постпроцессинговой обработки данных «Меап Curve» определялись «зоны интереса» (ROI-region of interest): ROI 1 — наиболее контрастируемый участок, ROI 2 — весь объем тканей, ROI 3 — магистральная артерия, ROI 4 — неизмененная мышца и строились в автоматическом режиме кривые контрастирования, отражающие нарастание интенсивности сигнала во времени. При анализе полученных кривых и постконтрастных изображений при МРТ-ДК оценивались следующие параметры:

- характер контрастирования (диффузный; преимущественно по периферии, по перегородкам);
 - тип кривой: участка/всего объема тканей (I-IV);
- время начала контрастирования интересующей зоны (Tstart) по отношению к ближайшей магистральной артерии: участка/всего объема тканей;
 - пик контрастирования (Peak enhancement) (%):участка/всего объема тканей;

- крутизна кривой (Steepest slope) (%/sec): участка/всего объема тканей;
- наклон кривой (Slope) (%/sec): участка/всего объема тканей;
- среднее значение интенсивности накопления KB (Mean): участка/всего объема тканей.

При выполнении MPT-BT стандартный протокол исследования включал в себя две последовательности в коронарной проекции: Т1ВИ SE и Т2ВИ ТІRМ для всего тела. Использовались катушки для головного мозга, шеи, туловища. При высоком росте пациента дополнительно использовалась катушка для MP-ангиографии нижних конечностей. При обработке полученных данных применялась функция «сшивания» изображений. В зависимости от поставленных задач, выявленных патологических очагов и состояния пациента к стандартному исследованию в коронарной проекции добавлялись исследования в аксиальной проекции: головного мозга в режиме dark-fluid, грудной и брюшной полостей в Т2ВИ (turbo spin echo или blade, толщина среза 4-6 мм), конечностей (Т2ВИ ТSE, Т2fs, Т1ВИ SE). Применение данного сочетания режимов являлось оптимальным для выявления патологии всех частей тела. Впоследствии оценивалось: наличие поражения органов брюшной полости, головного мозга, легких, лимфатических узлов; наличие изменений сигнала от костномозгового пространства (округлые множественные очаги, сливающиеся очаги неправильной формы, тотальное изменение MP-сигнала на всем протяжении костномозгового канала).

Компьютерная томография (КТ) производилась на компьютерных томографах Siemens Somatom и Philips Brilliance 40 пациентам. У 11 больных применялось внутривенное контрастирование, при этом использовалась инжекторная система болюсного введения КВ (medrad vistron CT, liebel-flarsheim Mallinckrodt) в дозировке 1,5-2 мл/кг; скорость введения 1,5-3,2 мл/сек).

По данным КТ оценивались следующие параметры: наличие/отсутствие объемного образования (злокачественная/доброкачественная опухоль, воспаление, послеоперационные изменения), взаимоотношение с соседними структурами (наличие заинтересованности сосудов, изменение со стороны костных структур, реакция окружающих мягких тканей).

Ультразвуковое исследование выполнялось на аппаратах Philips HD11XE, Philips iU22, Siemens Acuson Antares S2000 с применением цветового допплеровского картирования и энергетического картирования (ЦДК и ЭК) 106 пациентам. В последствии оценивались следующие параметры: наличие/отсутствие объемного образования (злокачественная/доброкачественная опухоль, воспаление, послеоперационные изменения), взаимоотношение с соседними структурами (наличие заинтересованности сосудов, изменение со стороны костных структур, реакция окружающих мягких тканей).

Рентгенография выполнялась на аппарате фирмы Siemens Luminos RF Classic у 39 детей. Результаты рентгенографии оценивались по следующим параметрам: наличие/отсутствие объемного образования, изменение со стороны костных структур.

При радиоизотопном исследовании мягких тканей (n=61) учитывалось врачебное заключение о наличие/отсутствие зон накопления РФП в мягких тканях, а при радиоизотопном исследовании костей скелета (n=42) учитывалось наличие очагов гиперфиксации РФП в костях.

Статистические методы обработки материала. Для сравнения качественных признаков использовался χ^2 -тест с поправкой Йетса на непрерывность при таблицах сопряжения 2х2 или точный критерий Фишера при малых выборках. Во всех случаях применялся 95% доверительный интервал и двусторонний Р, с уровнем значимости Р<0,05. Статистическая обработка данных производилась с использованием программы Statistical Package for the Social Sciences software program (version 17.0; SPSSInc.Chicago, IL). При определении информативности метода диагностики использовали следующие показатели: Чувствительность — ИП:(ИП+ЛО)х100% (в контексте данного исследования — это способность патологические Специфичность метода выявлять изменения). ИО:(ИО+ЛП)х100% (в контексте данного исследования — это способность метода выявлять злокачественные изменения). Точность — (ИП+ИО): Nx100% (доля правильных результатов количестве полученных результатов). общем Прогностическая положительного результата — ИП:(ИП+ЛП)х100% (это вероятность заболевания пациентов при положительном результате диагностического теста). Прогностическая ценность отрицательного результата — ИО:(ИО+ЛО)х100% (вероятность отсутствия заболевания у пациентов при отрицательном результате теста), где: ИП — истинно положительный результат, ИО — истинно отрицательный результат, ЛП — ложно положительный результат, ЛО — ложно отрицательный результат, N — общее число обследованных больных.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

MP-семиотика опухолей и неопухолевых изменений в мягких тканях туловища и конечностей

Проанализированы данные стандартной МРТ 79 пациентов с опухолевым процессом, из них 61 больной с подтвержденным диагнозом «злокачественной опухоли» (ЗО) (37 пациентов с первичной ЗО и 24 пациента с рецидивом ЗО), 18 пациентов с диагнозом «доброкачественная опухоль» (ДО) и 27 пациентов с неопухолевыми изменениями.

В нашем исследовании мы выделили МР-семиотические признаки образований мягких тканей, представленные в таблице 1.

Таблица 1 — MP-семиотические признаки образований мягких тканей

Признаки			Вид о	бразований		р
		опухоли (n=79)		неопухолевые изменения (n=27)		
		абс.	%	абс.	%	
Наличие объемного	да	76	96,2	5	18,5	<0,05
образования	нет	3	3,8	22	81,5	< 0,05
Φomγo	правильная	11	13,9	2	7,4	>0,05
Форма	неправильная	68	86,1	25	92,6	>0,05
T	узловой	76	96,2	5	18,5	<0,05
Тип изменений	инфильтративный	3	3,8	22	81,5	<0,05
	четкие	54	68,4	3	11,1	<0,05
Контуры	нечеткие	25	31,6	24	88,9	<0,05
П*	гладкая	12	15,8	2	7,4	>0,05
Поверхность*	бугристая	64	84,2	3	11,1	>0,05
	однородная	33	41,8	22	81,5	<0,05
Структура	неоднородная	46	58,2	5	18,5	<0,05
D	да	57	72,2	8	29,6	<0,05
Вовлечение мышц	нет	22	27,8	19	70,4	<0,05
	четкая	22	27,8	19	70,4	<0,05
Граница с мышцей	нечеткая	57	72,2	8	29,6	<0,05
C	есть связь	41	51,9	1	3,7	<0,05
Сосуды	нет связи	38	48,1	26	96,3	<0,05
П	есть связь	23	29,1	0	0	<0,05
Нервы	нет связи	56	70,9	27	100	<0,05
V a amyra w wa amu	есть	18	22,8	0	0	<0,05
Костная деструкция	нет	61	77,2	27	100	<0,05
Иотельной полити	есть	10	12,7	1	3,7	>0,05
Изменения коркового слоя	нет	69	87,3	26	96,3	>0,05
Omera via emire a	есть	13	16,5	1	3,7	>0,05
Отек костного мозга	нет	66	83,5	26	96,3	>0,05

^{* —} у 25 пациентов (3 с опухолями, 22 с неопухолевыми изменениями) оценить поверхность: гладкая/бугристая не представлялось возможным, тип изменений был инфильтративный

Из таблицы 1 следует, что для опухолей мягких тканей характерно (p<0,05): наличие объёмного образования с узловым типом изменений (96,2%), четкие контуры (68,4%), неоднородная структура (58,2%), которая в 63,3% случаев представлена солидно-жидкостным строением, вовлечение сосудов (51,9%), нервов (29,1%), мышц (72,2%), наличие вторичной костной деструкции (22,8%).

При неопухолевых изменениях определялось: отсутствие объемного образования, наличие инфильтративных изменений (81,5%) в увеличенной в объеме конечности, нечеткие контуры (88,9%), однородная структура изменений (81,5%), отсутствие вовлечения в процесс

сосудов (96,3%) и нервов (100%), мышц с сохранением четкой дифференцировки мышечных волокон и наличием четкой границы с последними (70,4%), (p<0,05).

Однородно солидная структура образований выявлялась у 29 пациентов (36,7%) при опухолях и у 2 пациентов (7,4%) при неопухолевых изменениях (p>0,05). Неоднородность структуры образований как при опухолях, так и при неопухолевых изменениях была обусловлена наличием жировых включений, включений с низким MP-сигналом (кальцификация) и включений, содержащих продукты распада гемоглобина (2,5%, 11,4% и 19% при опухолях и 0%, 7,4% и 3,7% при неопухолевых изменениях, p>0,05).

Анализ характеристики MP-сигнала выявил, что большинство образований в Т2ВИ и T2fs выглядят гиперинтенсивными и изоинтенсивными в Т1ВИ относительно неизменных мышечных структур (p>0,05). При этом неопухолевые изменения достоверно чаще в Т2ВИ представлены изоинтенсивными тканями, а опухоли имеют слабогиперинтенсивный MP-сигнал, относительно неизменных мышечных структур (p<0,05).

МР-семиотика злокачественных и доброкачественных опухолей и неопухолевых изменений в мягких тканей

Анализируя МР-признаки злокачественных и доброкачественных опухолей, можно сделать вывод о том, что по данным стандартной МРТ достоверно высказаться о характере процесса крайне затруднительно, опираясь только на наличие объемного образования и его характеристики. Однако для 3О характерна солидно-жидкостная структура в 78,8% против 11,1% при ДО, поражение мышечных (83,6% против 33,3%) и костных (29,5% против 0) структур, (р<0,05).

При сравнительном анализе наиболее часто встречающихся СМТ у детей, рабдомиосаркома (РМС) и синовиальная саркома (СС), нами не выявлено достоверно значимых отличий (p>0,05).

Сравнительный анализ неопухолевых изменений и доброкачественных/промежуточных опухолей выявил ряд достоверных различий (p<0,05). Для неопухолевых изменений в мягких тканях туловища и конечностей характерен: инфильтративный характер изменений без выявляемого объемного образования (81,5%), однородная структура (81,5%), нечеткие контуры (88,9%), отсутствие вовлечения магистральных сосудов (96,3%), p<0,05. ДО характеризуются наличием объемного образования с узловым типом изменений (94,4%), четкими контурами (77,8%), неоднородной структурой (55,6%), вовлечением магистральных сосудов (44,4%), p<0,05.

МР-семиотика рецидивов сарком мягких тканей и послеоперационных изменений

Из 78 больных со злокачественными опухолями у 16 (20,5%) пациентов в послеоперационном периоде были диагностированы рубцовые изменения по данным МРТ, у

24 (30,8%) — местные рецидивы опухоли после перенесенной операции по месту первичного обращения.

На сканах MPT все рубцовые изменения определялись как линейные тяжи неправильной формы, во всех режимах сканирования они имели пониженный MP-сигнал, что при гистологическом исследовании соответствовало фиброзной ткани.

Рецидивы злокачественных опухолей определялись как однородные (66,7%), солидные 58,3% образования, имели бугристую поверхность у 83,3%, нечеткие контуры в 41,7%, (p>0,05).

МРТ с динамическим внутривенным контрастированием в оценке характера изменений мягких тканей

При анализе МРТ-ДК пациенты были разделены на две группы: первая группа — опухоли (n=19), куда вошли 16 пациентов с 3О и 3 пациента с ДО, вторая группа — неопухолевые изменения (n=6), состоящая из 3 пациентов с истинным воспалительным поражением и 3 пациентов с послеоперационными рубцовыми изменениями.

Разделение больных на данные группы было вызвано необходимостью проведения дифференциально диагностического поиска истинно доброкачественных процессов, не требующих онкологического подхода к лечению.

В таблице 2 определены основные показатели МРТ-ДК, на основании которых производились дифференциально-диагностические заключения.

Согласно полученным данным, для опухолей типично (p<0,05): контрастирование в периферических отделах тканей (52,6%), IV тип кривой (кривая с «washout» фазой) в наиболее контрастируемом участке тканей (21,1%). Неопухолевые изменения характеризуются (p<0,05) диффузным типом распределения контрастного вещества (100%), II типом кривой («мышечная» кривая) как в наиболее контрастируемом участке тканей, так и во всем объеме (66,6%).

Оценивая количественные параметры МРТ-ДК различий среди опухолевой патологии и неопухолевых процессов выявлено не было.

Проведя сравнительный анализ данных МРТ-ДК среди злокачественных и доброкачественных опухолей было отмечено, что 3О и ДО имеют достоверные различия в количественных параметрах: пик контрастирования участка и всего объема тканей, и среднее значение интенсивности сигнала участка (р<0,05). Пик контрастирования всей опухоли, ниже у 3О, чем у ДО, вероятнее всего, из-за более выраженной негомогенности структуры 3О, содержания жидкостных участков, не накапливающих контрастное вещество. Пик контрастирования участка и среднее значение интенсивности сигнала участка у ДО были выше, чем у 3О, так как ДО были представлены сосудистыми мальформациями/опухолями, характеризующимися высокой проницаемостью стенки для КВ, что отражается на способности КВ быстро проникать из сосудистого русла в ткани образования.

Таблица 2 — Признаки МРТ-ДК образований мягких тканей

		Тип образований				р
Показатели МРТ-ДК		Опухоли		Неопухолевые		
Показатели ин 1-дк	Tionusuresin iii 1 Arc		(n=19)		изменения (n=6)	
		абс	%	абс	%	
Начало контрастирования	≤6 сек	11/10	57,9/52,6	5/4	83,3/66,6	>0,05
(участка/ всего объема тканей)	>6 сек	8/9	42,1/47,4	1/2	16,7/33,3	
Тип	диффузный	8	42,1	6	100	<0,05
контрастирования	периферический	10	52,6	0	0	<0,05
	по перегородкам	1	5,3	0	0	>0,05
Тип кривой	II	0/0	0	4/4	66,7/66,7	<0,05
(участка/всего объема	III	9/12	47,4/63,1	1/1	16,7/16,7	>0,05
тканей)	IV	4/1	21,1/5,3	0/0	0/0	<0,05
	V	6/6	31,6/31,6	1/1	16,7 /16,7	>0,05
Пик контрастирования	ик контрастирования		121,5-		186,6-	
участка (%)		1075,0($396,9)\pm70,3$	942,8(5	942,8(530,8)±100,8	
Крутизна кривой участка (%/c)		2,6-105,2(20,2)±6,0 3,4-49,6(22,		$6(22,3)\pm7,0$	>0,05	
Наклон кривой участка (%/c)		1,2-97,	8(11,3)±5,0	1,2-9,2(5,1)±1,2		>0,05
Средняя интенсивность		ĺ.	35,8-	1	145,6-	>0,05
сигнала участка (единиц)		949,4(3	344,0)±61,6	907,4(376,5)±112,8		
Пик контрастирования			89,1-	180,4-		>0,05
всего объема тканей (%)		948,9(3	315,4)±59,6	789,6(413,9)±86,3		
Крутизна кривой всего		1,7-75,2(14,9)±4,7		3,2-32,1(14,4)±4,4		>0,05
объёма тканей (%/с)						
Наклон кривой всего		0,7-62	$,6(7,0)\pm3,3$	1,0-10	$,5(4,1)\pm1,4$	>0,05
объема тканей (%/с)						
_ · · ·	Средняя интенсивность		33,3-		133,8-	>0,05
сигнала всего объема		752,4(2	$254,8)\pm47,1$	748,8(315,3)±92,9	
тканей (единиц)						

3О характеризовались преимущественным периферическим накоплением (62,5% против 0% у ДО, p<0,05), IV и V типом кривых (p<0,05), ранним накоплением КВ (p<0,05).

ДО преимущественно накапливали контрастное вещество диффузно во всем объеме опухоли (66,7% против 37,5% у 3О, p>0,05), определялся III тип кривой (p<0,05).

II тип кривой («мышечная» кривая) накопления КВ среди исследуемых опухолевых образований не встречался.

У всех пациентов с послеоперационными изменениями наблюдался II тип кривой контрастирования (p<0,05), диффузный характер распределния КВ (p<0,05), время начала накопления КВ определялось и до, и после 6 секунд (p>0,05).

В случаях рецидивов опухолей накопление KB отмечалось преимущественно в периферических отделах узла (p<0,05), одинаково часто встречались IV, III и V типы кривых накопления KB (p>0,05), тогда как II тип определён не был (p<0,05).

Информативность методов лучевой диагностики в выявлении злокачественных опухолей мягких тканей

Сравнительная характеристика информативности методов лучевой диагностики в выявлении злокачественных опухолей мягких тканей выявила следующую закономерность. Стандартная МРТ превосходит УЗИ в чувствительности (способность выявлять образования мягких тканей) 100% и 93,8%, соответственно, и в специфичности (распознавание злокачественной патологии), 86,7% и 70,5%, соответственно. МРТ также превосходит РИД мягких тканей в чувствительности (100% и 74,4%, соответственно), специфичность обоих методов приблизительно равна. Применение рентгеновских методов в первичной диагностике патологии мягких тканей не оправдано в силу низких показателей их информативности.

Снижение показателя специфичности МРТ-ДК, по сравнению со стандартной МРТ, было обусловлено наличием двух ЛП результатов (идиопатическая воспалительная миопатия и фиброматоз десмоидного типа экстаабдоминальная форма). Данные изменения имели показатели МРТ-ДК характерные для 3О из-за выраженной васкуляризации патологических тканей. При выявлении рецидивов 3О на фоне послеоперационных изменений не было получено ЛП результатов при МРТ-ДК. Результаты представлены в таблицах 3 и 4.

Таблица 3 — Распределение результатов лучевых методов диагностики в выявлении злокачественных опухолей

Мотоли	Истинно	Истинно	Ложно	Ложно	ВСЕГО
Методы	положительный	отрицательный	отрицательный	положительный	исследований
MPT	62	39	0	6	107
МРТ-ДК	17	8	0	2	27
УЗИ	60	31	4	11	106
КТ	26	10	5	3	44
Рентген	22	4	10	3	39
РИД мт	29	18	10	4	61

Таблица 4 — Информативность методов лучевой диагностики в дифференциальной диагностике опухолевых и неопухолевых изменений в мягких тканях

Метод	Чувствительность, %	Специфичность, %	Точность, %	ПЦПР, %	ПЦОР, %
MPT	100	86,7	94,4	91,2	100
МРТ-ДК	100	80	92,6	89,5	100
УЗИ	93,8	70,5	85,8	84,5	88,6
KT	83,9	76,9	81,8	89,7	66,7
Рентген	68,8	57,1	66,7	88,0	28,6
РИД мт	74,4	81,8	77,0	87,9	64,3

МРТ в оценке местной распространённости процесса

МРТ в оценке местной распространённости процесса

Оценка информативности магнитно-резонансной томографии в определении местной распространенности опухоли была основана на сопоставлении с данными хирургических находок и морфологических заключений 44 больных, прооперированных в условиях НИИ ДОиГ за период 2009-2013 гг. Удаление первичной опухоли было проведено у 27 (61,4%) детей, местных рецидивов у 13 (29,6%), иссечение рубца (ревизионные операции) произведено 4 (9%) пациентам. На этапе диагностики пациентам выполнялись магнитно-резонансная томография (n=44), ультразвуковое сканирование (n=44), компьютерная томография (n=21), из них 4 исследования с контрастным усилением, рентгенологическое исследование (n=19).

Взаимоотношение опухолей с мышечными структурами

По данным МРТ у 27 (61,4%) пациентов определялась инфильтрация мышц, которая проявлялась изменением МР-сигнала от них в виде повышения в Т2ВИ и Т2fs и понижения в Т1ВИ, в большинстве случаев МР-сигнал от мышц был сходен с сигналом самой опухолевой ткани. Граница с мышечными структурами при этом выглядела нечеткой, отсутствовала жировая прослойка (гиперинтенсивная линия в Т1ВИ и Т2ВИ) между опухолью и мышцами и определялось нарушение дифференциации мышечных волокон и нарушение их архитектоники. Хирургическая тактика в данном случае сводилась к удалению опухоли вместе с вовлеченными группами мышц (en blok).

Реактивный отек мышц, возникающий вследствие нарушения трофики тканей, выявлялся у 6 (13,7%) пациентов при МРТ и характеризовался повышением МР-сигнала в Т2ВИ и Т2fs, сохранением мышечной дифференцировки с четким отграничением от патологического образования жировой прослойкой. Данные изменения не требовали удаления данных групп мышц.

У 10 (22,7%) больных изменения в мягких тканях располагались межмышечно, что нашло свое подтверждение во время операции.

При КТ у 13 (61,9%) пациентов был отмечен инфильтративный характер роста опухоли, проявляющийся нечеткой границей между опухолью и мышцами, отсутствием гиподенсивной жировой прослойки. ЛО встречались дважды и были обусловлены четкостью контура опухоли и ее небольшими размерами.

Во время проведения УЗ-исследования у 24 (54,5%) пациентов заинтересованность прилежащих мышц в виде врастания и инфильтрации тканей определялась по повышению эхогенности прилежащих к опухоли мышечных структур и оттеснению мышечных прослоек. Недооценка характера изменений соседних структур у 4 больных, получивших ЛО результат, была обусловлена малым полем обзора при больших опухолевых массах, а также низкой

контрастностью тканей, что затрудняло идентификацию тонких жировых прослоек между опухолью и мышцей. Результаты приведены в таблице 5.

Таблица 5 — Информативность методов лучевой диагностики в определении заинтересованности мышечных структур

Метод	Чувствительность, %	Специфичность, %	Точность, %	ПЦПР, %	ПЦОР, %
MPT	96,4	100	97,7	100	94,1
КТ	86,7	100	90,5	100	75
УЗИ	75	100	84,8	100	60

Таким образом, чувствительность MPT в оценке вовлечения мышечных структур превосходит данные КТ и УЗИ. Отсутствие ложноположительных результатов у всех методов диагностики определяет высокие показатели их специфичности.

Взаимоотношение опухолей с костными структурами

Изменения костных структур при СМТ были выявлены у 12 (27,3%) пациентов во время хирургических вмешательств и при последующих гистологических исследованиях, что потребовало у 6 детей выполнить резекцию кости, у 4 — резецировать надкостницу, а у двоих больных кость была удалена полностью, единым блоком с опухолью.

Определение вовлечения костных структур изучаемыми методами оценивалось на основании изменения надкостницы в виде появления двойного контура при ее отслоении, наличия периостальной реакции. Неровность коркового слоя, появление участков нарушения целостности в местах наибольшего истончения расценивались как врастание в корковый слой. Широкое прилежание опухоли к кости также считалось как вторичные изменения со стороны костных структур. При этом данные изменения сопровождались исчезновением или понижением интенсивности сигнала на МРТ (при КТ — повышение плотности) от жировой прослойки между костью и опухолью, что требовало резекции надкостницы во время хирургического вмешательства. При полном разрушении коркового слоя выявлялось распространение опухолевых масс в костномозговой канал кости или ее губчатое вещество. Результаты представлены в таблице 6.

Таблица 6 — Информативность методов лучевой диагностики в выявлении вторичного поражения костных структур

Метод	Чувствительность, %	Специфичность, %	Точность, %	ПЦПР, %	ПЦОР, %
MPT	91,7	100	97,7	100	96,7
КТ	88,9	100	95,2	100	92,3
УЗИ	66,7	90,6	84,1	72,7	87,9
Рентген	71,4	100	89,5	100	85,7

МРТ и КТ обладают схожими показателями чувствительности в выявлении вторичного поражения костных структур при опухолях мягких тканей туловища и конечностей и способны дифференцировать опухолевое поражение и реактивные изменения, что подтверждается отсутствием ЛП результатов. УЗИ и рентгенологическое исследование ввиду низкой чувствительности в выявлении вторичного поражения костных структур не могут являться методами выбора.

Взаимоотношение опухоли с сосудисто-нервными пучками

Определение заинтересованности сосудисто-нервных пучков (СНП) основывается на ряде признаков, характеризующих степень их вовлечения в опухолевый процесс: дислокация, компрессия, деформация просвета сосуда, нечёткость его стенки, отсутствие жировой прослойки между сосудом/нервом и опухолью, а также погружение в опухолевый процесс более чем на 50% окружности сосуда/нерва. Сосуд и нерв считаются не заинтересованными при визуализации их в типичном месте и при сохранении жировой прослойки между ними и опухолью.

При МРТ благодаря высокой контрастности тканей и возможности применения различных последовательностей удается дифференцировать сосудисто-нервный пучок без применения дополнительного контрастного усиления.

Целесообразность применения КТ с внутривенным контрастированием у детей дискутабельна. Для исследования сосудов применение контрастного вещества является необходимостью, что в несколько раз повышает лучевую нагрузку в виду необходимости повторения нескольких последовательных фаз сканирования и обладает достаточно широким спектром противопоказаний и возможных побочных действий.

УЗИ при этом, являясь неинвазивным, доступным и высокочувствительным методом в оценке кровотока, также как и МРТ, позволяет оценить степень заинтересованности сосудов. Результаты представлены в таблице 7.

Таблица 7 — Информативность методов лучевой диагностики в определении заинтересованности сосудисто-нервных структур

Метод	Чувствительность, %	Специфичность, %	Точность, %	ПЦПР, %	ПЦОР, %
MPT	100	100	100	100	100
KT					
без в/в контр.	16,7	100	70,6	100	68,8
с в/в контр.	100	100	100	100	100
УЗИ	93,8	100	97,7	100	96,6

Таким образом, наиболее информативным методом в определении вовлечения сосудисто-нервных пучков является МРТ. КТ с внутривенным контрастированием также демонстрирует высокие показатели информативности метода в определении взаимосвязи

опухолевого процесса и СПН, но имеет ограниченное применение у детей в связи с высокой лучевой нагрузкой, тогда как нативная КТ не позволяет характеризовать расположение СНП по отношению к опухоли. УЗИ может конкурировать с МРТ в определении заинтересованности сосудистых структур.

МРТ в оценке отдаленной распространённости процесса

В НИИ ДОи Γ за период с 2009 по 2013 гг. было обследовано 15 детей с диссеминированными формами опухолей мягких тканей (м — 7, ж — 8) , возраст детей от 1,5 до 16 лет.

В результате комплексного обследования, включая МРТ-ВТ, были выявлены злокачественные опухоли мягких тканей у 13 детей (86,7%), у двоих (13,3%) — доброкачественные. Злокачественные опухоли были представлены: рабдомиосаркомой — 8 (53,3%), синовиальной саркомой — 2 (13,3%), примитивно нейроэктодермальной опухолью (ПНЭО) — 1 (6,7%), фибросаркомой — 1 (6,7%), десмопластической мелкокруглоклеточной опухолью — 1 (6,7%). Доброкачественные опухоли (n=2) были представлены нейрофибромами при нейрофиброматозе 1 типа. Все диагнозы были подтверждены морфологически путем биопсии первичной опухоли или метастатически измененных лимфатических узлов.

Помимо MPT-BT всем пациентам проводились традиционные лучевые методы обследования: УЗИ, РИД скелета, РИД мягких тканей, КТ органов грудной клетки с или без КТ брюшной полости (с внутривенным контрастированием), трепанобиопсия костного мозга из подвздошных костей, грудины.

У детей с саркомами мягких тканей определялись метастатические изменения в различных органах. Изменения в костях были выявлены у 5 больных, при этом выделено 3 варианта изменений: (1) множественные округлые очаги измененного МР-сигнала, сливающиеся очаги, создающие неправильной формы зоны измененного МР-сигнала, (3) диффузное повышение МР-сигнала на всем протяжении костномозгового канала трубчатых костей и костной ткани позвонков и плоских костей. Сочетание округлых множественных очагов и сливающихся очагов неправильной формы в костномозговом пространстве трубчатых костей встречалось у трех пациентов, у одного больного выявлено тотальное изменение МРсигнала на всем протяжении костномозгового канала, у другого — только округлые множественные очаги. При этом у 4 пациентов с наличием сочетанных очагов в костномозговом пространстве и тотально измененного МР-сигнала при трепанобиопсии подвздошных костей выявлено поражение костного мозга, предположение о котором было высказано при МРТ-ВТ. У всех 5 пациентов с изменениями в костях при РИД скелета дано заключение о специфическом поражении костей. Таким образом, все показатели

информативности МРТ-ВТ и РИД скелета в выявлении изменений в костях составили 100%. Однако, исследуя отдельные анатомические области, было отмечено несоответствие выявленных изменений при РИД скелета и МРТ-ВТ, что отражено в таблице 8.

Таблица 8 — Выявление количества очагов поражения костей в различных анатомических областях по данным РИД скелета и МРТ-ВТ

Анатомические области	РИД скелета	MPT BT	Всего
С-отдел позвоночника	1	4	4
Тh-отдел позвоночника	3	5	5
L-S-отдел позвоночника	1	4	4
Кости таза	2	5	5
Кости черепа	4	4	4
Бедренные кости	3	5	5
Плечевые кости	2	5	5
Лопатки /ключицы	1	5	5
Ребра	3	5	5
Грудина	3	3	4
Дистальные отделы рук/ног	1	5	5
Всего зон	24(47,1%)	50(98,0%)	51(100%)

Анализируя данные таблицы 8, следует отметить, что чувствительность МРТ-ВТ превосходит таковую при РИД скелета в отдельных анатомических областях, 98,0% и 47,1% соответственно. Специфичность обоих методов при этом составила 100%. В первую очередь такие результаты связаны с разрешающей способностью радионуклидного метода в визуализации очагов меньше 5 мм. Во-вторых, недооценкой полученных результатов при интерпретации данных в зонах, богатых красным костным мозгом у маленьких детей, отсутствием реактивной остеопластической активности в зоне метастатических очагов, а также в случаях только интрамедуллярного поражения. Наибольшие трудности при выявлении метастазов в костях возникли при оценке позвоночного столба, где РИД скелета из 13 очагов выявила только 5 (38,5%), а МРТ-ВТ — 13 (100%). Также трудности возникли при интерпретации изменений в зонах, содержащих кроветворный костный мозг (метафизы длинных трубчатых костей, плоские кости), и в кистях и стопах, где разрешающая способность РИД скелета у детей снижена в силу небольших размеров самих костей. МРТ-ВТ была отрицательна только при выявлении изменений в одной анатомической области — грудине, которая у одного пациента не вошла в зону исследования (переднезадний размер грудной клетки превышал поле сканирования). Таким образом, при РИД скелета удалось выявить только 24 (47,1%) зоны поражения из 51, в то время как МРТ-ВТ дала положительный результат в 50 (98,0%) зонах.

При МРТ всего тела выявлялись как регионарные, так и отдаленные метастатические лимфатические узлы в виде отдельных увеличенных и изменённых лимфатических узлов или конгломератов. При этом патологически измененные лимфатические узлы, также как и неизмененная лимфоидная ткань (тимус, селезенка, миндалины ротоглотки и нормальные лимфатические узлы), обладают повышенным сигналом, и разграничение нормальных и метастатических узлов основывается на оценке их размеров, формы и выявлении измененного МР-сигнала и обнаружении их в тех анатомических областях, в которых они обычно не визуализируются.

При MPT-BT у 7 пациентов были выявлены увеличенные лимфатические узлы, что совпало с данными УЗИ и подтверждено результатами гистологического исследования. У одного пациента с увеличенными регионарными лимфатическими узлами при MPT-BT было дано ложноположительное заключение.

Изменения в легочной ткани в виде множественных округлых образований повышенной интенсивности MP-сигнала в режиме STIR определялись у трех пациентов, нашедшие подтверждение при РКТ органов грудной клетки. У одного пациента наличие мелких очагов в легких (до 3 мм по данным КТ) на MPT-ВТ не выявлялось.

Поражение других органов (селезенки, брюшины, плевры, головного мозга) как метастатического характера при злокачественных формах опухолей мягких тканей, так и при специфическом поражении при нейрофиброматозе 1 типа, выявлено при MPT-BT у трех больных.

МРТ всего тела обладает высокими показателями информативности в выявлении, как первичного патологического процесса, так и метастатического. В педиатрической онкологической практике метод должен широко применяться в силу своей эффективности, неинвазивности, высокой контрастности тканей (даже без использования внутривенного контрастирования), а также как метод не связанный с лучевой нагрузкой, что наиболее актуально в детском возрасте.

выводы

1. Определены основные MP-признаки опухолевых и неопухолевых изменений в мягких тканях туловища и конечностей у детей. Для опухолевых изменений характерно (p<0,05): наличие объёмного образования с узловым характером роста (96,2%), четкие контуры (68,4%), неоднородная структура (58,2%) за счет жидкостных зон (63,3%), вовлечение сосудистонервных пучков (51,9%), мышц (72,2%), наличие вторичной костной деструкции (22,8%). При MPT с динамическим контрастированием характерен преимущественно периферический тип распределения контрастного вещества (52,6%), IV тип кривой (21,1%), p<0,05. Для

неопухолевых изменений характерно (p<0,05): отсутствие объемного образования и инфильтративный тип изменений (81,5%), нечеткие контуры (88,9%), однородная структура (81,5%), отсутствие вовлечения сосудисто-нервных пучков, мышц и костных структур. При МРТ с динамическим контрастированием характерен диффузный тип распределения контрастного вещества (100%), любой тип кривой, кроме IV, p<0,05.

- 2. Выявлены достоверные дифференциально-диагностические критерии злокачественных опухолей (p<0,05): вовлечение сосудисто-нервных пучков (85,2%), мышц (83,6%), вторичная костная деструкция (29,5%), солидно-кистозная структура (78,7%). При МРТ с динамическим контрастированием злокачественные опухоли характеризуются ранним накоплением контрастного вещества, периферическим типом его распределения, IV-V типом кривых (p<0,05). Ввиду разных нозологических форм доброкачественных опухолей достоверных отличий от злокачественных опухолей в данном исследовании выявлено не было.
- 3. Определены возможности методики MPT с динамическим контрастированием в диагностике рецидивов сарком мягких тканей на фоне посттерапевтических изменений (хирургических и лучевых). Рецидивы характеризуются преимущественно периферическим типом распределения контрастного вещества (66,7%) и III-V типом кривых, кроме II.
- 4. Стандартная МРТ превосходит УЗИ и РИД мягких тканей в чувствительности (выявление образований мягких тканей) 100%,93,8% и 74,4%, соответственно и в специфичности (распознавание злокачественной патологии) 86,7%, 70,5% и 81,8%, соответственно. Применение рентгеновских методов первичной диагностики патологии мягких тканей не оправдано в силу низких показателей их информативности.
- 5. МРТ превосходит по показателям информативности другие методы визуализации в оценке местной распространенности опухолевого процесса, и поэтому должна являться методом выбора на этапе предоперационного планирования.

ПРАКТИЧЕСКИЕ РЕКОМЕНДАЦИИ

На основании анализа полученных результатов о возможностях различных методов лучевой диагностики, нами был разработан алгоритм обследования больных с наличием образований мягких тканей туловища и конечностей без ранее проведённого лечения (схема 1).

- 1. Все пациенты с наличием образований мягких тканей туловища и конечностей на этапе первичной диагностики должны быть подвергнуты УЗ-исследованию.
- 2. При подтверждении наличия образования всем пациентам рекомендуется выполнять стандартную МРТ, как метод уточняющей диагностики с целью определения типа изменений, т.е. наличия объемного образования или инфильтративных изменений, а также для оценки местного распространения изменений.

Схема 1 — Алгоритм обследования детей с образованиями мягких тканей туловища и конечностей

- 3. При подтверждении инфильтративного характера изменений, характерного в большей степени для неопухолевых процессов, пациент должен наблюдаться в лечебных учреждениях общего профиля.
- 4. При выявлении объемного образования пациента рекомендуется направить в специализированное онкологическое учреждение с целью проведения МРТ с динамическим контрастированием для проведения дифференциальной диагностики опухолевой патологии злокачественного или доброкачественного характера, а также определения неопухолевой патологии, не имевшей характерных семиотических признаков при стандартной МРТ. После проведения МРТ-ДК всем пациентам рекомендуется проводить морфологическую верификацию выявленных изменений под контролем УЗИ.
- 5. При гистологическом подтверждении доброкачественных изменений, в том числе доброкачественных опухолей, пациент должен наблюдаться в лечебных учреждениях общего профиля.
- 6. При гистологическом подтверждении злокачественных опухолей пациент должен пройти комплексное обследование с применением лучевых методов диагностики, при этом MPT-BT должна рассматриваться как предпочтительный метод для выявления поражения лимфатических узлов, паренхиматозных органов, костей и в том числе костного мозга.

7. УЗ-исследование регионарных и отдаленных лимфатических узлов следует применять для подтверждения специфичности выявленных изменений, в том числе с целью взятия биопсии. КТ органов грудной клетки должно проводиться всем пациентам с подтвержденным диагнозом СМТ с целью выявления мелких очагов в легочной ткани. УЗИ органов брюшной полости и малого таза, РИД скелета могут применяться у всех детей с целью динамического контроля при отсутствии возможности проведения МРТ-ВТ.

Перед оперативным вмешательством всем пациентам с СМТ должна выполняться МРТ для оценки первичной распространённости процесса. Пациенты с морфологически подтвержденным диагнозом СМТ, перенесшие оперативные вмешательства, должны быть направлены в онкологическое учреждение с целью выполнения стандартной МРТ с МРТ-ДК для подтверждения радикальности оперативного вмешательства и исключения остаточной опухоли или возникновения рецидива заболевания на фоне послеоперационных изменений.

МРТ должна быть ведущим методом диагностики в оценке патологии мягких тканей не только в условиях специализированных медицинских учреждений, но и медицинских учреждения широкого профиля. Ее применение не должно быть ограничено диагностикой патологического процесса, а должно отражать его местную распространенность. Применение методик МРТ-ДК и МРТ-ВТ оправдано в условиях специализированных учреждений в силу своих технических трудностей и специфичностью выявляемых изменений.

КТ остается методом выбора для исключения метастатического поражения легочной ткани.

Не рекомендуется применение рентгенографии и компьютерной томографии для первичной диагностики патологии мягких тканей туловища и конечностей.

СПИСОК ПЕЧАТНЫХ РАБОТ, ОПУБЛИКОВАННЫХ В ЖУРНАЛАХ, РЕКОМЕНДОВАННЫХ ПЕРЕЧНЕМ ВАК ПРИ МИНОБРНАУКИ РОССИИ

- Барбашова, А.С. Внескелетная миксоидная хондросаркома у 9-летней девочки: клинический случай и обзор литературы / А.С. Барбашова, Д.Б. Хестанов, Е.В. Михайлова, И.В. Каминская, Е.В. Захарова, Т.Р. Панферова // Саркомы костей, мягких тканей и опухоли кожи. №1. 2013. С. 78-80.
- 2. Барбашова, А.С. Магнитно-резонансная томография всего тела в оценке лимфогенного и гематогенного метастазирования опухолей мягких тканей туловища и конечностей у детей / А.С. Барбашова, Н.В. Кочергина, Е.В. Михайлова, И.В. Каминская, Т.Р. Панферова, А.С. Крылов // Саркомы костей, мягких тканей и опухоли кожи. №2. 2014. С. 45-50.